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The Calculation of Crystal Energies as an Aid in Structural Chemistry. I. 
A Semi-empirical Potential-Field Model with Atomic Constants as Parameters* 
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A computer program has been written to calculate crystal energies as sums of Coulomb, van der Waals, 
repulsion and covalent bonding interactions. In this paper the general theory that leads to the energy 
expression is explained. It is shown that the choice of parameters and the inclusion of anisotropic 
thermal motion leads to the successful calculation of actual minimum energies for existing structures 
both for ionic and non-ionic compounds. The lattice-dynamical aspects of the model are discussed and 
the model is shown to be applicable to the analysis of lattice vibrations as used in the refinement of 
X-ray structure determinations. In further papers there will be a discussion of structural chemistry of 
different classes of compounds in terms of crystal energy. 
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1. Introduction 

The interpretation of the crystalline state of matter in 
terms of interatomic or intermolecular forces has al- 
ways been of interest in crystallography, although there 
has been no fundamental improvement of the energy 
expressions used since Born & Mayer (1932). This field 
of crystallographic investigation has been approached 
in two different ways depending on the substances 
treated. One, using the Born-Mayer potential, deals 
only with ionic crystals; the other, using more or less 
empirically evaluated expressions, deals only with or- 
ganic molecules (Kitaigorodski, 1961). Although some- 
what crude in its assumptions the latter model gave 
good results for the packing of organic molecules. As 
shown by Mirsky (1975) the quality of the results ob- 
tained from simple force-field calculations depends 
only on the choice of a suitable parameter set. For ionic 
crystals the problem is much more complicated. Busing 
(1970) has shown that the use of the Born-Mayer po- 
tential fails to predict structures that are influenced by 
strong electronic interactions. On the other hand the 
need for extensive computer time for solving relatively 
simple structural problems decreases the interest in 
treating crystallographic problems by lattice-energy 
calculations. So it is not surprising that there exists no 
general energy expression that can be used for calcula- 
tions of ionic as well as non-ionic crystal structures. 
Skorczyk (1975) investigated the possibility of an ap- 
proach to a general field theory applicable to all types 
of compounds and crystal structures. The only restric- 
tion on this theory is that it fails in cases where the 
structures are determined solely by electronic effects, 
as in metals, or in substances where spin orientation 
has to be taken into account. 

* Part of the thesis of Reinhard Skorczyk. 

2. The potential field 

The crystal structure of a compound is determined 
mainly by two interdependent influences that are re- 
sponsible for the formation of the observed lattice and 
the topology of each lattice point. These are the energy 
gained by forming a more or less close packing of the 
atoms involved, mainly determined by Coulomb, van 
der Waals and repulsion forces and the energy gained 
by forming as many covalent bonds as possible to each 
atom, determined by the most favourable electron dis- 
tribution with respect to the neighbours (this be cor- 
related with the heat of formation of complexes for 
example and with all types of electronic calculations 
for isolated molecules). 

The first part can be called the Born-Mayer part 
(BMPCE) and the second the covalent bonding part 
of the crystal energy (CBPCE). The mathematical prob- 
lem is then to evaluate the two parts independently 
and to optimize the energy as a sum of them with 
respect to the geometry of the crystal. 

The requirement of spending as little computer time 
as possible demands that all potentials should be eva- 
luated without the use of quantum mechanics. This 
choice of a classical description leads to the use of 
parameters to be varied independently but their num- 
ber must be restricted because it is well known from 
theoretical chemistry that it is possible to describe any 
phenomenon if there are enough variable parameters. 

2.1. Definition of the crystal energy 
Because of the narrow definition of lattice energy 

which is only useful for ionic crystals, it is convenient 
to define a 'crystal energy' as follows: The crystal en- 
ergy is the work done in bringing the atoms in the state 
they have in the crystal, including any partial charge 
as actually observed in the crystal, from infinity to their 
places in the lattice. For pure ionic crystals this defini- 



448 C R Y S T A L  E N E R G I E S  AS A N  A I D  I N  S T R U C T U R A L  C H E M I S T R Y .  I 

t ion  is in accordance  wi th  the def ini t ion of  lat t ice en- 
ergy. M o r e  genera l ly  the  lat t ice energy is the energy 
ob ta ined  by  sub t rac t ing  the b o n d i n g  energy f rom the 
crystal  energy.  

2.2. The choice of  parameters 
The  set o f  pa ramete r s  is subdiv ided  in to  a tomic  and  

s t ruc tura l  parameters .  In each g roup  there  is on ly  one 
pa rame te r  t ha t  can  be var ied independen t ly .  The  others  
are all ca lcula ted f rom a tomic  cons tan ts  or we l l -known  
s t ruc tura l  features.  The  a tomic  cons tan t s  are t a k e n  
f rom s t anda rd  compi la t ions .  This  res t r ic t ion on the 

choice of  pa ramete r s  is made  because the ca lcu la t ions  
mus t  be done  easily and  no t  depend  on measurement s  
to be carr ied out  in advance.  

2.3. The atomic parameters 
All a tomic  pa ramete r s  are listed in Table  1 w i th  

the i r  symbols  as used in the energy expressions.  The  
so-called Pau l ing  radi i  b~j (Table  2) are a tomic  incre- 
ments  wi th  the d imens ion  of  a l eng th  t h a t  are needed 
to c o m p u t e  incrementa l  force cons tan t s  f rom Badger ' s  
(1934) equa t ion .  The  parameter ,Pr~j  (Table  3) (percent-  
age covalent  character)  is given as an  a tomic  pa r am-  

Table  1. The atomic constants of  atom i, ordering 
number Z~, electronegativity Et, ionic radius (of charge) R~(Q~), covalent radius c~ 

Atoms Zt El Rl (Qt) c~ Atomt Zl El Rt (Ql) ci 
H 1 2.1 2.08 ( - 1 )  0.37 Ru 44 2.2 0.69 (+3) 
Li 3 1.0 0.60 (+  1) 1.34 0.64 (+4) 
Be 4 1"5 0"31 (+2) 0"90 Rh 45 2"2 0"86 (+2) 
B 5 2"0 0"20 (+3) 0"82 Pd 46 2"2 0"50 (+2) 
C 6 2"5 2"60 ( - 4 )  0'77 Ag 47 1"9 1"26 (+  1) 1"53 

0"15 (+4) Cd 48 1.7 0.97 (+2) 1.48 
N 7 3"0 1"71 ( - 3 )  0"75 In 49 1.7 0.81 (+3) 1.44 

0.11 (+5) Sn 50 1.8 1.12 (+2)  1.41 
O 8 3"5 1.40 ( - 2 )  0.73 0.71 (+4) 
F 9 4"0 1"36 ( - 1 )  0"72 Sb 51 1.9 2.45 ( - 3 )  1-38 
Na 11 0.9 0.95 (+1) 1-54 0.62 (+5) 
Mg 12 1.2 0.65 (+2) 1.30 Te 52 2.1 2.21 ( - 2 )  1.35 
A1 13 1.5 0.50 (+3) 1.18 0.56 (+6) 
Si 14 1.8 2.71 ( -  1) 1-11 I 53 2.5 2.16 ( -  1) 1-33 

0.41 (+4) 0.50 (+7) 
P 15 2.1 2.12 ( - 3 )  1.06 Cs 55 0.7 1.69 (+  1) 2.25 

0.34 (+5) Ba 56 0.9 1.35 (+2) 1.98 
S 16 2.5 1.84 ( - 2 )  1.02 La 57 1.1 1.15 (+3) 1-69 

0.29 (+6) Ce 58 1.1 1.01 (+4) 1.65 
C1 17 3.0 1.81 ( -  1) 0.99 Pr 59 1.1 1.09 (+3) 1.65 

0.26 (+7) Nd 60 1.2 1.08 (+3)  1.64 
K 19 0.8 1.33 (+1) 1.96 Sm 62 1-2 1.04 (+3) 1.66 
Ca 20 1.0 0.99 (+2) 1.74 Eu 63 (1.2) 1.12 (+2) 1-85 
Sc 21 1.3 0.81 (+3) 1.44 Gd 64 1.1 1-02 (+3) 1.61 
Ti 22 1.5 0.68 (+4)  1.36 Tb 65 1.2 1.00 (+3) 1.59 
V 23 1.6 0.59 (+5) - -  Dy 66 (1.2) 0.99 (+3) 1.59 
Cr 24 1.6 0.52 (+6) - -  Ho 67 1.2 0.97 (+3) 1.58 
Mn 25 1.5 0.46 (+7) m Er 68 1.2 0"96 (+3) 1.57 
Fe 26 1.8 0.76 (+2) - -  Tm 69 1.2 0.95 (+3) 1.56 

0.64 (+3) Yb 70 1.1 1.13 (+2) 1.70 
Co 27 1.8 0.78 (+2) - -  Lu 71 1.2 0.93 (+3) 1.56 

0.63 (+3) Hf 72 1.3 0.81 (+4) - -  
Ni 28 1.8 0.78 (+2) m Ta 73 1.5 0"73 (+5) - -  

0.62 (+3) W 74 1.7 0.68 (+6) 
Cu 29 1.9 0.96 (+  1) 1.38 Re 75 1.9 - -  - -  

0.69 (+2) Os 76 2.2 0.67 (+4)  - -  
Zn 30 1.6 0.74 (+2) 1.31 Ir 77 2.2 0.66 (+4) 
Ga 31 1.6 0.62 (+3)  1.26 Pt 78 2.2 0-52 (+2) - -  
Ge 32 1.8 0.53 (+4) 1.22 Au 79 2.4 1-37 (+  1) 1-50 
As 33 2.0 2.22 ( - 3 )  1.19 Hg 80 1.9 1.10 (+2) 1.49 

0.47 (+5) TI 81 1.8 0.95 (+3) 1.48 
Se 34 2.4 1.98 ( - 2 )  1.16 Pb 82 1-8 1.20 (+2) 1-47 

0.42 (+6)  0.84 (+4) 
Br 35 2.8 1-95 (--1) 1.14 Bi 83 1-9 1.20 (+3)  1.46 

0.39 (+7) 0.74 (+5) 
Rb 37 0.8 1.48 (+1) 2.11 Fr 87 0.7 1.76 (+1) 
Sr 38 1.0 1.13 (+2) 1.92 Ra 88 0.9 1.40 (+2) - -  
Y 39 1-3 0.93 (+3) 1.62 Ac 89 1.1 1.18 (+3) 

Th 90 1.3 1.14 (+3) 1.65 
Zr 40 1.4 0.80 (+4) 1.48 Pa 91 1.5 1.12 (+3) - -  
Nb 41 1.6 0.70 (+5) ~ U 92 1.7 1.11 (+3)  1.42 
Mo 42 1-8 0.62 (+6) - -  0.89 (+4) 
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eter because its value depends on the difference in 
electronegativity between bonded atoms and it is 
needed to calculate the effective charge on each atom. 
In addition it belongs to the CBPCE which is assumed 
atom specific. Its numerical values are listed in Table 3. 
All atomic parameters which cannot be obtained from 
compilations directly are explained in the next sections. 

Table 2. Constants for calculation of force constants 
from Badger's equation 

Element  alj  bij (in A) 

H2 2"32 0"025 
C12 2"04 1 "25 
Brz 1-98 1-48 
I2 2.04 1.76 
Li, Be, C 2.89 1.13 
Na, Mg, AI, Si 3.10 1.73 
K, Ca, Ti, V, Ge 2.06 1.46 
Cr, Fe, Co, Ni, Cu 13.30 2.31 
Rb, Sr, Zr, Nb, Mo, Sn 2-32 1.86 
Ru, Rh, Pd, Ag 4-12 2.10 
Ba, Ta, W 2.03 1.80 
Ce, Ir, Pt, Au, T1 2.96 1.99 

Table 3. The parameter Prtj (percent ionic character) 
and its dependence on the difference of electronegativity 

(Et-- Ej) % Ionic (Et - Ej) % Ionic 
x 10 character Pr~ x 10 character Prtj 

1 0.5 0.995 17 51 0.49 
2 1 0.99 18 55 0.45 
3 2 0.98 19 59 0.41 
4 4 0.96 20 63 0.37 
5 6 0.94 21 67 0.33 
6 9 0.91 22 70 0.30 
7 12 0.88 23 74 0.26 
8 15 0.85 24 76 0.24 
9 19 0.81 25 79 0.21 

10 22 0.78 26 82 0.18 
11 26 0.74 27 84 0.16 
12 30 0.70 28 86 0.14 
13 34 0.66 29 88 0.12 
14 39 0.61 30 89 0.11 
15 43 0.57 31 91 0.09 
16 47 0.53 32 92 0.08 

2.3.1. The effective charge 
For the calculation of the effective charge the fol- 

lowing expression is used: 
N 

Q~(eff) = Q~+ ~ Pr~j sign (EI-Ej) ,  (1) 
J 

( N =  number of atoms j bonded to atom i). 
As only the effective charge is used in calculations, the 
index (eft) will be omitted. The partial charges ob- 
tained in this way are in good agreement with those 
obtained from quantum-mechanical calculations by 
semi-empirical methods (Skorczyk, 1972). The quad- 
ratic form of the Prtj comes from the fact that a 
power-series expansion was used and it was found that 
agreement is sufficient when only the quadratic term 
is used. 

2.3.2. The polarizability 
From quantum mechanics (Sch/ifer, 1965) it is known 

that the polarizability is proportional to the third 
power of the radius of the electron shell. Because the 
value of P~ depends directly on the strength of the 
electron attraction by the nucleus, the proportionality 
constant can be approximated by an expression using 
the ratio of electronic charge to charge of the nucleus 
(atomic number) and the electronegativity, 

p _  (4n/3)R~ a 
Et exp ( -  a, /z , ) .  (2) 

If one thinks of the polarizability in a more classical 
fashion, as in the Clausius-Mosotti equation, the va- 
lidity of (2) may be doubted, especially for heavy 
atoms. A better interpretation is to think of the cube 
root of (2) as the root mean amplitude of the Cartesian 
components of the zero-point vibration. 

2.3.3. The hardness parameters 
The hardness parameters are defined as a measure 

of the compressibility of an isolated atom in a bond 
direction. In the work of Born & Mayer (1932) they 
are not incremented but taken as an average factor 
specific to the class of compound involved. Because 
this procedure is valid only for binary systems, Gilbert 
(1968) generalized the concept by splitting this factor 
into individual atomic parameters. As Gilbert's way 
of obtaining the hardness parameters from SCF cal- 
culations and from the vibrational spectra of diatomic 
molecules is too complicated, an empirical expression 
is used which calculates the parameters from the atomic 
number, the electronic charge and the ionic radius 
only. For computing the expression uses only relative 
values of the hardness parameters. Their absolute val- 
ues are somewhat structure dependent and are adjusted 
by a scale factor explained in § 2.3.4. The formula is 
based on the fact that the hardness increases with the 
number of electrons in a given volume and decreases 
with that volume because of less hindrance of the elec- 
trons. The second influence taken into account is the 
electron attraction by the net charge of the atom. The 
expression is (note that a small numerical value means 
great hardness and vice versa, because the dimension 
is a length) 

Rt 
h~- z , - o ,  exp(Ol ) .  (3) 

2.3.4. The scale factor of the hardness parameters 
This factor scales the values of the hardness param- 

eters in pairs of all possible interactions, e.g. for NaC1 
these pairs are Na-Na,  Na-C1 and C1-C1. It is an over- 
all factor that is adjusted according to certain minimum 
conditions for the crystal energy obtained from the 
second derivatives of the repulsion potential and the 
difference between overall potential and repulsion. Its 
numerical value can be interpreted as the percentage 
contribution of the repulsion in the crystalline state 

A C 32A - 7 



450 C R Y S T A L  E N E R G I E S  AS AN AID IN S T R U C T U R A L  C H E M I S T R Y .  I 

compared with that in the isolated molecule. One con- 
dition for its calculation is the fact that in an existing 
structure the positions of all atoms belong to a local 
energy minimum corresponding to the equilibrium po- 
sition of each atom. From this the conditions for the 
second derivatives are 

~/r--~o=a<-0> ~, ~rb ]~=~o =b (4) 

and 
la l= lb l ,  (4a) 

( W =  overall potential = crystal energy, R = repulsion). 
The above conditions mean that at equilibrium the re- 
pulsive force must increase at the same rate as the 
attractive force with respect to interatomic distances. 

2.4. The structural parameters 
The common structural parameters are the lattice 

constants and the atomic parameters. In addition, the 
tensor of the thermal motion represented by a prob- 
ability density function of the atoms is treated as a 
structural parameter in crystallography. From the lat- 
tice constants and the atomic parameters a set of equi- 
librium distances for a given structure can be evaluated. 
This set of r0's uses, for the calculation of the other 
structural parameters, the so-called soft-sphere radii 
(Gilbert, 1968) which correspond to the thermal vibra- 
tions of the atoms. The calculation of the soft-sphere 
radii from the thermal ellipsoids leads to the success- 
ful calculation of energy minima for non-spherical 
structures as will be shown in part III of this series. 

2.5. The soft-sphere radii 
The calculation of the soft-sphere radii is separated 

into two steps. The first is the analysis of the possible 
vibrations of each atom with respect to nearest-neigh- 
bour interactions and the determination of the orienta- 
tion and the relative length of the axes of the thermal 
ellipsoids. The second step is the determination of the 
absolute volume of the ellipsoids with respect to the 
crystal energy. 

2.5.1. The analysis of  atomic vibrations 
The possible directions of vibration for an atom in 

a neighbourhood of given symmetry are determined 
by two influences. One is the strength of the bonds and 
the other the stretching-force constant for these bonds. 
For the calculation of the crystal energy only com- 
ponents in bond directions are taken into account; 
force constants for torsional oscillation can be omitted. 
To calculate the relative elongation from the harmonic 
oscillators, reduced values for energy and force con- 
stant are used. They are defined as 

E~j= E(r= r,j)/E(r= ro) (5) 

f , j  = (A +fj)r,j/(f~ +fJ)r =to • (5a) 

(Note that r0 is not the equilibrium distance but an ar- 
bitrarily chosen distance which in normal cases is set 

to 1 A. by the program.) The force-constant increments 
are obtained from Badger's equation (Badger, 1935; 
Pauling, 1968): 

f ~ t/a= aij(ri j _ bij). (6) 

The increments are obtained from the assumption 

fi~=½(fi, + f j j ) .  (6a) 

This might appear to be a rather rough assumption, 
but as one needs only relative values the agreement of 
calculated and observed temperature factors with this 
approximation is very good (Table 4). With this term 
a displacement vector is calculated to each neighbour- 
ing atom j from atom i after the harmonic oscillator 

~ = ( E J f o )  1/z. (7) 

To this star of vectors an ellipsoid is now fitted min- 
imizing the quadratic deviation of the endpoints of 
these vectors from the ellipsoid surface. From this the 
lattice-dependent orientation and relative length of the 
axes are obtained. 

Table 4. Observed and calculated Debye-Waller factors 
for different structures 

Bcal c - -  Bobs l 
Compound Beale Bobs Bcatc L ~ J 

Space group Atom (h 2) (h 2) --Bobs X 100 (%) 
MgCl2 Mg 0"68 
R~m CI 2" 17 

CaC12 Ca 0.37 
Pnnm CI 0.85 

SrCI2 Sr 0" 19 
Fm3m C1 0"69 

BaC12 Ba 1.43 
Pbnm CI(1) 1.52 

C1(2) 1.79 

EuCI2 Eu 1.13 1.04 0.09 8-6 
Pbnm CI(1) 1.17 1.09 0.06 5.5 

C1(2) 1.31 1-25 0.06 4.8 

EuBr2 
P4/n 

EuI2 
P21]c 

EuI2 
Pbca 

(C~H6)zCr 

Eu(1) 1.60 1.52 0.08 5-3 
Eu(2) 1.48 1.39 0.09 6.5 
Br(1) 2.16 2.02 0.14 6.9 
Br(2) 1"67 1-59 0.08 5.0 
Br(3) 1.43 1.38 0-05 3.6 
Br(4) 1.51 1.46 0.05 3-4 

Eu 1"51 1-5 0.01 0"7 
J(1) 2.10 2.04 0.06 2-9 
J(2) 1.51 1-5 0.01 0.7 

Eu 1.4 1.37 0.03 2-2 
J(l) 2-2 2"15 0"05 2-3 
J(2) 1.6 1.57 0-03 1.9 

Cr 0.37 0.36 0.01 2-8 
C(1) 0"77 0"9 0"13 14"4 
C(2) 0"72 0"8 0"08 10"0 
H(1)* (0.95) (1.0) 0-05 (5.0) 
H(2)* (1.2) (1.0) 0.2 (20.0) 

* Not significant. 
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The expression used to calculate the E,j is the same 
(with isotropic soft-sphere radii for the repulsion) as 
for the total crystal energy. As recently shown by 
Killean & Lisher (1975a, b, c, d) and Mair, Mathieson 
& Killean (1975) simple potentials give good results 
for calculated Debye-Waller factors. 

2.5.2. The absolute thermal ellipsoids 
The tensor u 'J of the thermal ellipsoids is absolutely 

determined by the following conditions: 

dW(u'J)=O, (8) 
d ( W -  R)/du 'J = - dR(u':). (8a) 

The ellipsoids are fitted to those conditions by varying 
their volume. These values can be compared directly 
with those obtained from X-ray determinations. Table 
4 shows that the agreement is within experimental error. 

The so-called soft-sphere radii are now defined as 
the vector components fit of u 'J in direction i-j. For a 
pure ab initio calculation of the crystal structure of a 
compound they might be used in a different way, be- 
cause there is no lattice known for vibrational analysis. 
In this case one can take them to imply the deviation 
of the electron shell from spherical symmetry depend- 
ing on the influence of a non-spherical Fermi surface. 
The author doubts that there is much purpose in such 
calculations. In part II it will be shown that a partial 
ab initio calculation is a useful aid in structural chem- 
istry. 

2.6. The crystal energy 
2.6.1. The BMPCE 

The BMPCE consists of three terms which are mod- 
ifications of that used in Busing's (1970) work to cal- 
culate the lattice energy. The expression used here is 

L= ~ ~ Q'Qje~2 exp (Rl + 

_vsaK~ Z,I/p,Zj1/pj 
r6j 

+ Sh(h~ + hj) exp ( 
U,j rlj 

(9) 
S~fh, + h : )  , " 

The sound velocity vs in the van der Waals term is the 
second free parameter. If it is not known, it is deter- 
mined from the condition Wobs-- W e a l e  = min. The inner 
summation goes over all atoms in one unit cell, while 
the outer summation goes over all atoms in a sphere 
which contains enough atoms to take all interactions 
sufficiently into account. There are 27 cells* from - a  
to 2a, - b  to 2b and - c  to 2c (a, b and c are cell par- 
ameters). This sphere must always follow Pauling's 
principle of electroneutrality. 

The van der Waals term is derived from the London 
model of perturbed coupled oscillators, As it is often 
difficult to evaluate the frequencies needed, the am- 

* This value is set by the program. 

plitudes of the oscillation are calculated from the po- 
larizability with the relation l/v, ~Z,~/p,. With this the 
constant Ko is determined as (3e4h)/(64n4m2e), m e being 
the mass of the electron. The consequence of the mod- 
ification of the London model to a model of mechan- 
ical interaction of the electron shells is the introduction 
of the sound velocity into the van der Waals term. 

The Born distance U,j in the repulsion potential is 
calculated as the sum of the ionic radii and the soft- 
sphere radii, 

Utj= R, + Rj + ~J + ~ .  (9a) 

The exponential factor in the Coulomb potential is 
used as a modification function to improve conver- 
gence, because all summations are carried out in direct 
space. On the other hand, it can be used to calculate 
permanent dipole moments by varying the ionic radii 
with respect to the energy minimum, which gives the 
components of the polarization tensor. The results ob- 
tained from this potential cannot be compared with 
those from MAPLE calculations (Hoppe & Stewner, 
1971) except for cubic structures because the atoms 
are not taken as point charges. For the 'classical' com- 
pounds treated with lattice-energy calculations (Born, 
1918a, b; Land6, 1918; Ewald, 1921; Born & Mayer, 
1932; Bertaut, 1952) the calculation of the BMPCE is 
sufficient, because the CBPCE gives only small correc- 
tions to the results. Simple MAPLE calculations (Hop- 
pe & Stewner, 1971) are not as useful in structural 
chemistry, as emphasized by Hoppe himself. 

2.6.2. The CBPCE 
It is known from quantum-mechanical calculations 

that the influence of covalent bonding is always present, 
even in LiF or NaC1. Thus it is obvious that its contri- 
bution to the crystal energy cannot be neglected. 

The treatment of the problem is separated into a 
radial and an angular part according to the classical 
treatment of wave functions. The radial part is taken 
as a simple energy distribution with respect to ideal 
bond lengths weighted by the percentage of covalent 
character of the bond treated: 

t j r l j - ( c , + c j )  " 

(10) 
The energy of dissociation E~j can be taken from com- 
pilations or from quantum-mechanical calculations. 
The angular part of the CBPCE calculates the angular 
strain of the coordination polyhedra coming from the 
deviation from ideal hybridization of the central atom. 
By ideal hybridization is meant that electron distribu- 
tion which depends only on the electron configuration 
of the atom in the bond state. This potential is also 
weighted by the percentage covalent character: 

tp_- ~ Z PruE~j Z sin2 Aqhjg • (11) 
l J g 

The index k runs over all bonded neighbours. 

A C 3 2 A  - 7* 
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2.6.3. The total energy 
The total energy, the crystal energy itself, is the sum 

of all potentials presented: 

W = L  + C + q~ . (12) 

Fig. 1 shows a representation of all contributing poten- 
tials with respect to distance. 

The five-potential expression not only provides a 
more detailed description of existing structures with 
respect to lattice, topology and dynamics but also pre- 
dicts stable phases by comparing possible structures 
(see part lI of this series). 

3. Program LA TTICE 

A computer program LATTICE has been written in 
Fortran for crystal-energy calculations with the poten- 
tial-field model presented (Skorczyk & Tigges, 1975). 
The program is available for computers of the Univac 
1100 series in two versions, one with 27 K words of 
core used and one for large molecules with 60 K words 
of core used. The small version is dimensioned as fol- 
lows (large version given in brackets): 5 (99) atoms in 
asymmetric unit, 30 (792) in unit-cell and 540 (2500) 
atoms overall. Each atom may have six different neigh- 
bours and a maximum coordination of 12. The ver- 
sions can readily be adopted for other computers with 
a minimum word length of 36 bit. A version for IBM 
370 computers is in preparation (Skorczyk & Stege- 
mann, 1975). 

For minimization the program uses a simplex proce- 
dure written by the author. This simplex has the ad- 
vantage of a very high speed, as does the whole pro- 
gram. On the Univac l l06/II of the Rechenzentrum 
Freiburg it takes 11 s CPU time to minimize the energy 
of MgC12 in its hexagonal cell and the calculation of 
all thermal ellipsoids of bis(benzene)chromium with 
100 atoms in the unit cell and 1600 atoms overall needs 
60 rain, including the first energy minimization of the 
structure. 

The calculation were carried out on the Univac 
l l06/II of the Rechenzentrum der Universit/it Frei- 
burg, and on the IBM 370/168 of the Hochschulrechen- 
zentrum der TH Darmstadt. Parts of this work were 
supported by the Deutsche Forschungsgemeinschaft. 
The author thanks Professor J. Felsche for valuable 
discussions, H. Tigges for assistance in program- 
ming, and Mrs U. Gebhard for typing the script. 
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